Skip to content

Spatially Resolved Tumor Purity Maps (SRTPMs)

Notifications You must be signed in to change notification settings

lsqqqq/SRTPMs

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Spatially Resolved Tumor Purity Maps (SRTPMs)

DOI

This repository is the official implementation of Obtaining Spatially Resolved Tumor Purity Maps Using Deep Multiple Instance Learning In A Pan-cancer Study.

We have developed a deep learning-based multiple instance learning (MIL) model predicting tumor purity of a sample from its H&E stained digital histopathology slides. The model's predictions are consistent with genomic tumor purity values, which are computationally inferred from genomic data and accepted as the golden standard. Furthermore, we have obtained spatially resolved tumor purity maps using the trained model to better understand the tumor microenvironment, a primary determinant of therapeutic response.

We have successfully tested our MIL models on eight different cohorts in The Cancer Genome Atlas (TCGA) and a local Singapore cohort. For all cohorts, we use the same model architecture. Here, we will go through the TCGA LUAD cohort, yet it applies to all.

Folder structure:

SRTPMs
├── _filtered_manifest_files
│	├── gdc_manifest__BRCA__filtered.txt
│	├── gdc_manifest__GBM__filtered.txt
│	├── gdc_manifest__KIRC__filtered.txt
│	├── gdc_manifest__LGG__filtered.txt
│	├── gdc_manifest__LUAD__filtered.txt
│	├── gdc_manifest__LUSC__filtered.txt
│	├── gdc_manifest__OV__filtered.txt
│	├── gdc_manifest__PRAD__filtered.txt
│	├── gdc_manifest__THCA__filtered.txt
│	├── gdc_manifest__UCEC__filtered.txt
│	└── tcga_cohorts__patient_ids__slide_ids.xlsx
├── _images
├── LUAD
│	├── Images
│	├── WSIs
│	├── dataset
│	├── mil_dpf_regression
│	├── pre_processing
│	├── prepare_dataset
│	└── tcga_data
├── README.md
└── requirements.txt

We will explain the following steps one-by-one:

Required Python Packages

All the experiments were run in a virtual environment created with pip on a Linux machine.

To install requirements:

pip install -r requirements.txt

Collecting TCGA Data

This part explains downloading (i) whole slide images (WSIs) and (ii) files containing information about slides and analytes from TCGA data portal.

Whole Slide Images (WSIs)

We download the manifest file and filter out the slides of samples that have genomic tumor purity values obtained from genomic data using ABSOLUTE. We present the filtered manifest file within "WSIs" folder. Note that filtered manifest files for all cohorts are given inside "_filtered_manifest_files" folder in the main directory.

WSIs
└── gdc_manifest__LUAD__filtered.txt

We download the slides by using gdc-client:

gdc-client download --manifest gdc_manifest__LUAD__filtered.txt

Final content of the folder:

WSIs
├── gdc_manifest__LUAD__filtered.txt
├── 225f3bad-a221-44fc-9409-373cece21bd8
│	├── logs
│	└── TCGA-05-4244-01A-01-TS1.6c46d8c3-d7b4-4513-af31-9170244d60a7.svs
├── b79109c9-b3ce-4f4d-bce4-0fae9c49cf2d
│	├── logs
│	└── TCGA-05-4244-01A-01-BS1.90f043f6-e8d5-4cfd-b4e7-84207bc499a6.svs
├── fe63d8b5-c173-45bd-9404-f89c49296641
│	├── logs
│	└── TCGA-05-4420-01A-01-TS1.ca743cbe-1c69-4096-97d6-1b83489d1b79.svs
├── 62786dda-fc84-4138-9b60-72d3448676d9
│	├── logs
│	└── TCGA-05-4420-01A-01-BS1.d5af72a1-39d5-4060-93ee-aafefce8622d.svs
...

Slide and Analyte Info

We download the files "slide.tsv" and "analyte.tsv" from TCGA data portal, and put them into the "tcga_data" folder.

Initial content of the folder:

tcga_data
├── analyte.tsv
├── slide.tsv
├── analyze_tcga_pathologist_predictions.sh
├── collate_data_files.py
└── slide_level_to_sample_level.py

To obtain slide-level and sample-level percent tumor nuclei estimates of pathologists, we run:

analyze_tcga_pathologist_predictions.sh

Final content of the folder:

tcga_data
├── analyte.tsv
├── slide.tsv
├── analyze_tcga_pathologist_predictions.sh
├── collate_data_files.py
├── slide_level_to_sample_level.py
├── analyte_portion_submitter_ids.txt
├── slide_ids__percent_tumor_nuclei_estimates.txt
├── sample_id__slide_portion_ids__analyte_portion_ids.txt
├── slide_id__analyte_portion_id__percent_tumor_nuclei.txt
└── sample_id__analyte_portion_id__percent_tumor_nuclei.txt

Slide-level percent tumor nuclei estimates (slide_id__analyte_portion_id__percent_tumor_nuclei.txt):

# slide_id	analyte_portion_id	percent_tumor_nuclei
TCGA-05-4244-01A-01-TS1	01	80.0
TCGA-05-4244-01A-01-BS1	01	80.0
TCGA-05-4420-01A-01-TS1	01	80.0
TCGA-05-4420-01A-01-BS1	01	75.0
...

Sample-level percent tumor nuclei estimates (sample_id__analyte_portion_id__percent_tumor_nuclei.txt):

# sample_id	analyte_portion_id	percent_tumor_nuclei
TCGA-05-4244-01A	01	80.0
TCGA-05-4420-01A	01	77.5
...

Pre-Processing

This part explains (i) obtaining WSI paths, WSI IDs, and patient IDs and (ii) constructing tissue masks and cropping patches.

Initial content of the folder:

pre_processing
├── construct_wsi_path_and_patient_id_files.sh
├── pre_process.sh
├── tissue_mask_construction.py
└── crop_all_small_patches_over_tissue_mask.py

WSI paths, WSI IDs, and Patient IDs

We update the full folder path WSI_DIR="/mnt/Tumor_Purity/LUAD/WSIs" in the shell script. Then, to obtain WSI paths, WSI IDs, and Patient IDs, we run:

construct_wsi_path_and_patient_id_files.sh

WSI paths of primary solid tumor samples (WSI_filelist_primary_solid_tumor):

/mnt/Tumor_Purity/LUAD/WSIs/225f3bad-a221-44fc-9409-373cece21bd8/TCGA-05-4244-01A-01-TS1.6c46d8c3-d7b4-4513-af31-9170244d60a7.svs
/mnt/Tumor_Purity/LUAD/WSIs/b79109c9-b3ce-4f4d-bce4-0fae9c49cf2d/TCGA-05-4244-01A-01-BS1.90f043f6-e8d5-4cfd-b4e7-84207bc499a6.svs
/mnt/Tumor_Purity/LUAD/WSIs/fe63d8b5-c173-45bd-9404-f89c49296641/TCGA-05-4420-01A-01-TS1.ca743cbe-1c69-4096-97d6-1b83489d1b79.svs
/mnt/Tumor_Purity/LUAD/WSIs/62786dda-fc84-4138-9b60-72d3448676d9/TCGA-05-4420-01A-01-BS1.d5af72a1-39d5-4060-93ee-aafefce8622d.svs
...

WSI IDs of primary solid tumor samples (wsi_id_primary_solid_tumor):

TCGA-05-4244-01A-01-TS1
TCGA-05-4244-01A-01-BS1
TCGA-05-4420-01A-01-TS1
TCGA-05-4420-01A-01-BS1
...

Patient IDs of primary solid tumor samples (patient_id_primary_solid_tumor):

TCGA-05-4244
TCGA-05-4420
...

The same set of files are also obtained for solid tissue normal samples. Please note that patient id for a solid tissue normal sample is the same with the one for primary solid tumor sample (since they were collected from the same patient).

Final content of the folder:

pre_processing
├── construct_wsi_path_and_patient_id_files.sh
├── pre_process.sh
├── tissue_mask_construction.py
├── crop_all_small_patches_over_tissue_mask.py
├── WSI_filelist_primary_solid_tumor
├── wsi_id_primary_solid_tumor
├── patient_id_primary_solid_tumor
├── WSI_filelist_solid_tissue_normal
├── wsi_id_solid_tissue_normal
└── patient_id_solid_tissue_normal

Tissue Masks and Patch Cropping

To construct tissue masks showing the tissue regions in the slides (tissue_mask_construction.py) and crop patches over the tissue regions (crop_all_small_patches_over_tissue_mask.py), we run:

pre_process.sh

Here is an example WSI, corresponding tissue mask and a few cropped pathces:

alt text

Tissue mask folders and cropped patches folders are created inside "Images":

Images
├── primary_solid_tumor_tissue_masks_level6
├── solid_tissue_normal_tissue_masks_level6
├── all_cropped_patches_primary_solid_tumor__level1__stride512__size512
└── all_cropped_patches_solid_tissue_normal__level1__stride512__size512

The cropped patches over the slides of a patient are stored in a folder named with the patient id inside cropped patches folder. A text file (cropped_patches_filelist.txt) storing the slide and location info of each cropped patch is also created within each patient folder. Besides, a global file (cropped_patches_info_patient_id_primary_solid_tumor_all.txt) containing the number of cropped patches for each patient is created in the main folder.

all_cropped_patches_primary_solid_tumor__level1__stride512__size512
├── cropped_patches_info_patient_id_primary_solid_tumor_all.txt
├── TCGA-05-4244
│	├── cropped_patches_filelist.txt
│	├── 0.jpeg
│	├── 1.jpeg
│	├── ...

├── TCGA-05-4420
│	├── cropped_patches_filelist.txt
│	├── 0.jpeg
│	├── 1.jpeg
│	├── ...

...

The number of patches cropped over the slides of each patient (cropped_patches_info_patient_id_primary_solid_tumor_all.txt):

# patient_id	number_of_patches
TCGA-05-4244	921
TCGA-05-4420	783
...

The slide id from which a patch is cropped and location of the patch within the slide (TCGA-05-4244/cropped_patches_filelist.txt):

# patch_id	wsi_id	mask_row	mask_col	bg_ratio
0	TCGA-05-4244-01A-01-TS1	16	32	0.5
1	TCGA-05-4244-01A-01-TS1	16	48	0.4
...

Prepare Dataset

This part explains preparing machine learning dataset.

Content of the folder "prepare_dataset":

prepare_dataset
├── compare_imaging_and_genomic_data.py
├── generate_5_fold_data.py
├── cropped_patches_info_patient_id_primary_solid_tumor_all.txt
├── cropped_patches_info_patient_id_solid_tissue_normal_all.txt
└── purity_ABSOLUTE.txt

The files containing number of patches for each patient are copied from the previous section and genomic tumor purity values are obtained from genomic data.

Genomic tumor purity values ("purity_ABSOLUTE.txt"):

# patient_id	purity
TCGA-05-4244	0.44
TCGA-05-4420	0.59
...

We use the data of patients who have both imaging and genomic data. To obtain those patients, we run:

python compare_imaging_and_genomic_data.py

This creates the dataset folder and info files for all patients:

dataset
└── all_patches__level1__stride512__size512
	├── all_patients_info_file.txt
	└── all_patients_solid_tissue_normal_info_file.txt

Here is the info file for tumor samples (all_patients_info_file.txt):

# patient_id	num_patches	purity_score	group_id
TCGA-05-4244	921	0.44	4
TCGA-05-4420	783	0.59	5
...

Then, to split the data into 5 folds at patient-level, we run:

python generate_5_fold_data.py

Final content of the "dataset" folder:

dataset
└── all_patches__level1__stride512__size512
	├── all_patients_info_file.txt
	├── all_patients_solid_tissue_normal_info_file.txt
	├── fold0_info_file.txt
	├── fold1_info_file.txt
	├── fold2_info_file.txt
	├── fold3_info_file.txt
	└── fold4_info_file.txt

Multiple Instance Learning Model

We formulate tumor purity prediction as a MIL task such that a sample is represented as a bag of patches cropped from the sample's slides, and the sample's genomic tumor purity value is used as the bag's label. We train the model on the training set (fold0, fold1, and fold2), choose the best model based on the validation set (fold3), and finally tested on the unseen patients of the hold-out test set (fold4).

This section explains each step from training to testing the model. The python and shell scripts used in each step are listed in the corresponding section. Hyperparameters inside the scripts are set to the default values used in the paper.

Training

Scripts used in this section:

mil_dpf_regression
├── distribution_pooling_filter.py
├── resnet_no_bn.py
├── model.py
├── dataset.py
├── train.py
└── plot_loss.py

To train a model:

python train.py

Metrics collected during training are written into "loss_data" folder and model weights are saved in regular intervals into "saved_models" folder.

mil_dpf_regression
├── loss_data
│	├── loss_metrics__2020_12_04__15_36_52.txt
│	├── ...

├── saved_models
│	├── model_weights__2020_12_04__15_36_52__10.pth
│	├── model_weights__2020_12_04__15_36_52__20.pth
│	├── ...

...

To plot loss curves:

python plot_loss.py --data_file loss_data/loss_metrics__2020_12_04__15_36_52.txt --filter_size 10

Example loss curves:

alt text

Predicting Sample-level Tumor Purity

For each sample, we create 100 bags from the sample's slides and obtain predictions from the trained model. Then, the average of 100 predictions is used as sample-level tumor purity prediction for that sample.

Scripts used in this section:

mil_dpf_regression
├── dataset_patient.py
├── test_patient.py
└── collect_statistics_over_bag_predictions__sample_level.py

To obtain sample-level tumor purity predictions from a trained model:

python test_patient.py --init_model_file saved_models/model_weights__2020_12_04__15_36_52__1660.pth

Metrics collected during inference are written into "test_metrics".

mil_dpf_regression
├── test_metrics
	├── 2020_12_04__15_36_52__1660
		└── test
			├── TCGA-05-4426-01
			│	└── bag_predictions_TCGA-05-4426-01.txt
			├── TCGA-05-4433-01
			│	└── bag_predictions_TCGA-05-4433-01.txt
...

Example bag-level predictions for one patient in the test set (bag_predictions_TCGA-05-4426-01.txt):

# bag_id	truth	pred
TCGA-05-4426-01_0	0.700	0.754
TCGA-05-4426-01_1	0.700	0.737
TCGA-05-4426-01_2	0.700	0.716
...

To obtain sample-level predictions:

python collect_statistics_over_bag_predictions__sample_level.py --data_folder_path test_metrics/2020_12_04__15_36_52__1660/test

Collated bag-level predictions file, sample-level predictions file and scatter plots:

mil_dpf_regression
├── test_metrics
	├── 2020_12_04__15_36_52__1660
		└── test
			├── bag_predictions_all_patients.txt
			├── bag_level_scatter_plot.png
			├── patient_predictions_mpp.txt
			├── patient_level_scatter_plot_mpp.png
...

Sample-level predictions (patient_predictions_mpp.txt):

# patient_id	truth	pred
TCGA-05-4426-01	0.700	0.740
TCGA-05-4433-01	0.620	0.452
...

Performance Analysis and Statistical Tests

Scripts used in this section:

mil_dpf_regression
├── collate__pathologists_estimates__mil_predictions.py
├── scatter_plot.py
└── statistical_tests__mil_predictions__pathologists.py

To collate pathologists' estimates and the MIL model's predictions:

python collate__pathologists_estimates__mil_predictions.py --data_folder_path test_metrics/2020_12_04__15_36_52__1660/test
mil_dpf_regression
├── test_metrics
	├── 2020_12_04__15_36_52__1660
		└── test
			├── sample_id__percent_tumor_nuclei__purity__mil_pred.txt
...

Collated file content (sample_id__percent_tumor_nuclei__purity__mil_pred.txt):

# sample_id	percent_tumor_nuclei	truth	pred
TCGA-05-4382-01	0.700	0.210	0.384
TCGA-05-4389-01	0.750	0.480	0.549
...

To obtain scatter plots and performance metrics for MIL predictions and pathologists' estimates:

python scatter_plot.py --data_folder_path test_metrics/2020_12_04__15_36_52__1660/test

Scatter plots and summary statistics files:

mil_dpf_regression
├── test_metrics
	├── 2020_12_04__15_36_52__1660
		└── test
			├── patient_level_scatter_plot__mil.pdf
			├── patient_level_scatter_plot__pathologists.pdf
			├── summary_spearmann_corr_coeff_and_abs_err__mil.txt
			├── summary_spearmann_corr_coeff_and_abs_err__pathologists.txt
...

Scatter plot for MIL predictions (patient_level_scatter_plot__mil.pdf):

alt text

Scatter plot for pathologists' estimates (patient_level_scatter_plot__pathologists.pdf):

alt text

Summary statistics for MIL predictions (summary_spearmann_corr_coeff_and_abs_err__mil.txt):

# rho	rho_lower	rho_upper	p_value	mean_abs_err	std_abs_err	median_abs_err	Q1_abs_err	Q3_abs_err
0.515	0.320	0.660	2.1e-07	0.132	0.109	0.112	0.060	0.175

Summary statistics for pathologists' estimates (summary_spearmann_corr_coeff_and_abs_err__pathologists.txt):

# rho	rho_lower	rho_upper	p_value	mean_abs_err	std_abs_err	median_abs_err	Q1_abs_err	Q3_abs_err
0.255	0.036	0.448	1.5e-02	0.280	0.151	0.275	0.170	0.395

To statistically compare the performance of the MIL model's predictions and pathologists' percent tumor nuclei estimates in terms of correlation and absolute error with respect to genomic tumor purity values:

python statistical_tests__mil_predictions__pathologists.py --data_folder_path test_metrics/2020_12_04__15_36_52__1660/test

Summary of statistical tests file:

mil_dpf_regression
├── test_metrics
	├── 2020_12_04__15_36_52__1660
		└── test
			├── statistical_tests__mil__pathologists__summary.txt
...

Summary of statistical tests (statistical_tests__mil__pathologists__summary.txt):

# Statistical tests to compare mil predictions vs. percent tumor nuclei estimates
##### comparing correlated correlation coefficients using method of Meng et al. 1991 #####
...
## Statistical test summary on correlation coefficients ##
# rho1	pval1	rho_lower1	rho_upper1	rho2	pval2	rho_lower2	rho_upper2	p_val
0.515	2.1e-07	0.320	0.660	0.255	1.5e-02	0.036	0.448	1.2e-02
##### comparing absolute errors using Wilcoxon signed-rank test #####
...
## Statistical test summary on absolute errors ##
# mean_abs_error1	std_abs_error1	median_abs_error1	Q1_abs_error1	Q3_abs_error1	mean_abs_error2	std_abs_error2	median_abs_error2	Q1_abs_error2	Q3_abs_error2	p_val
0.132	0.109	0.112	0.060	0.175	0.280	0.151	0.275	0.170	0.395	3.9e-09

Predicting Slide-level Tumor Purity

For each slide, we create 100 bags and obtain predictions from the trained model. Then, the average of 100 predictions is used as slide-level tumor purity prediction.

Scripts used in this section:

mil_dpf_regression
├── dataset_slide.py
├── test_slide.py
└── collect_statistics_over_bag_predictions__slide_level.py

To obtain slide-level tumor purity predictions from a trained model:

python test_slide.py --init_model_file saved_models/model_weights__2020_12_04__15_36_52__1660.pth

Metrics collected during inference are written into "test_metrics_slide".

mil_dpf_regression
├── test_metrics_slide
	├── 2020_12_04__15_36_52__1660
		└── test
			├── TCGA-05-4426-01A-01-BS1
			│	└── bag_predictions_TCGA-05-4426-01A-01-BS1.txt
			├── TCGA-05-4426-01A-01-TS1
			│	└── bag_predictions_TCGA-05-4426-01A-01-TS1.txt
...

Example bag-level predictions for one slide in the test set (bag_predictions_TCGA-05-4426-01A-01-BS1.txt):

# bag_id	truth	pred
TCGA-05-4426-01A-01-BS1_0	0.700	0.724
TCGA-05-4426-01A-01-BS1_1	0.700	0.751
TCGA-05-4426-01A-01-BS1_2	0.700	0.712
...

To obtain slide-level predictions:

python collect_statistics_over_bag_predictions__slide_level.py --data_folder_path test_metrics_slide/2020_12_04__15_36_52__1660/test

Collated bag-level predictions file, slide-level predictions file and scatter plots:

mil_dpf_regression
├── test_metrics_slide
	├── 2020_12_04__15_36_52__1660
		└── test
			├── bag_predictions_all_slides.txt
			├── bag_level_scatter_plot.png
			├── slide_predictions_mpp.txt
			├── slide_level_scatter_plot_mpp.png
...

Slide-level predictions (slide_predictions_mpp.txt):

# slide_id	truth	pred
TCGA-05-4426-01A-01-BS1	0.700	0.736
TCGA-05-4426-01A-01-TS1	0.700	0.741
...

Statistical Tests

Scripts used in this section:

mil_dpf_regression
├── statistical_tests__using_two_slides_vs_one_slide.py
└── statistical_test__compare_top_bottom_slides_of_a_sample.py

To obtain statistics about slide-level predictions and to statistically compare predicting sample-level tumor purity using two slides together and using only one slide:

python statistical_tests__using_two_slides_vs_one_slide.py --data_folder_path test_metrics_slide/2020_12_04__15_36_52__1660/test

Summary files for statistical tests:

mil_dpf_regression
├── test_metrics_slide
	├── 2020_12_04__15_36_52__1660
		└── test
			├── abs_difference__between_slides_predictions__histogram.pdf
			├── statistical_test__using_two_slides_vs_one_slide__summary.txt
...

Histogram of absolute differences between top and bottom slides of samples (abs_difference__between_slides_predictions__histogram.pdf):

alt text

Summary of statistical tests (statistical_test__using_two_slides_vs_one_slide__summary.txt):

##### slide-level prediction statistics and summary of statistical test #####
### abs_difference =  np.abs(slide_pred_arr0 - slide_pred_arr1) ###
mean_abs_difference: 0.100, std_abs_difference: 0.110, median_abs_difference: 0.059, Q1_abs_difference: 0.023, Q3_abs_difference: 0.125
### abs_error_sample = np.abs(truth_arr - sample_pred_arr) ###
### mean_abs_error_slides = (abs_error0 + abs_error1)/2 ###
### difference = abs_error_sample - mean_abs_error_slides ###
mean_abs_error_sample: 0.118, std_abs_error_sample: 0.102, median_abs_error_sample: 0.084, Q1_abs_error_sample: 0.050, Q3_abs_error_sample: 0.168
mean_mean_abs_error_slides: 0.138, std_mean_abs_error_slides: 0.102, median_mean_abs_error_slides: 0.121, Q1_mean_abs_error_slides: 0.067, Q3_mean_abs_error_slides: 0.181
wilcoxon test: statistic=178.000, p-value=3.7e-04
# mean_abs_error_sample	std_abs_error_sample	median_abs_error_sample	Q1_abs_error_sample	Q3_abs_error_sample	mean_mean_abs_error_slides	std_mean_abs_error_slides	median_mean_abs_error_slides	Q1_mean_abs_error_slides	Q3_mean_abs_error_slides	pvalue
0.118	0.102	0.084	0.050	0.168	0.138	0.102	0.121	0.067	0.181	3.7e-04

To statistically compare if top and bottom slides of a sample are different in tumor purity:

python statistical_test__compare_top_bottom_slides_of_a_sample.py --data_folder_path test_metrics_slide/2020_12_04__15_36_52__1660/test

Summary files for statistical tests:

mil_dpf_regression
├── test_metrics_slide
	├── 2020_12_04__15_36_52__1660
		└── test__processed
			├── statistical_test__compare_top_bottom_slides_of_a_sample__pvalues.txt
			├── pvalues__boxplot.pdf
...

Box plot of pvalues obtained from statistical tests (pvalues__boxplot.pdf):

alt text

Statistical tests' pvalues file (statistical_test__compare_top_bottom_slides_of_a_sample__pvalues.txt):

# sample_id	p_val
TCGA-05-4382-01	2.2e-02
TCGA-05-4389-01	3.9e-18
TCGA-05-4420-01	3.9e-18
...

Obtaining Spatial Tumor Purity Maps

We first extract features of patches in a slide using the trained "feature extractor module" of the MIL model. Then, for each patch location, we predict tumor purity over a region-of-interest (ROI) centered at that location using trained the "transformation module" on distributions estimated from the features of patches within the ROI. By repeating this step for all patches in the slide, we obtained a tumor purity map.

Scripts used in this section:

mil_dpf_regression
├── distribution_pooling_filter.py
├── resnet_no_bn.py
├── model.py
├── dataset_patient_patch.py
├── extract_features.py
├── dataset_distribution_closest_patches.py
├── kde_np.py
├── get_purity_around_a_patch.py
└── obtain_purity_map_from_patch_scores.py

To exract patch features:

python extract_features.py --init_model_file saved_models/model_weights__2020_12_04__15_36_52__1660.pth

Extracted features files:

mil_dpf_regression
├── extracted_features
	├── 2020_12_04__15_36_52__1660
		└── test
			├── TCGA-05-4426-01
			│	└── extracted_features_TCGA-05-4426-01.txt
			├── TCGA-05-4433-01
			│	└── extracted_features_TCGA-05-4433-01.txt
...

To get purity scores over ROIs containing 16 closest patches around each patch:

python get_purity_around_a_patch.py --init_model_file saved_models/model_weights__2020_12_04__15_36_52__1660.pth --num_instances 16

Patch score files:

mil_dpf_regression
├── patch_scores__16
	├── 2020_12_04__15_36_52__1660
		└── test
			├── TCGA-05-4426-01A-01-BS1
			│	└── patch_scores_TCGA-05-4426-01A-01-BS1.txt
			├── TCGA-05-4426-01A-01-TS1
			│	└── patch_scores_TCGA-05-4426-01A-01-TS1.txt
...

Example patch score file (patch_scores_TCGA-05-4426-01A-01-BS1.txt):

# row_id	col_id	score
32	144	0.7472
32	160	0.7868
32	176	0.8677
...

To get tumor purity maps:

python obtain_purity_map_from_patch_scores.py --data_folder_path patch_scores__16/2020_12_04__15_36_52__1660/test

Example tumor purity map:

alt text

About

Spatially Resolved Tumor Purity Maps (SRTPMs)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.5%
  • Shell 1.5%