Skip to content

Commit

Permalink
tglf: references: add doi links
Browse files Browse the repository at this point in the history
  • Loading branch information
tomneiser committed Aug 23, 2023
1 parent 0773d0e commit 509b09e
Show file tree
Hide file tree
Showing 6 changed files with 97 additions and 78 deletions.
12 changes: 6 additions & 6 deletions docs/tglf.html
Original file line number Diff line number Diff line change
Expand Up @@ -125,16 +125,16 @@ <h2>Overview<a class="headerlink" href="#overview" title="Link to this heading">
</thead>
<tbody>
<tr class="row-even"><td><p>SAT0</p></td>
<td><p><span id="id1">[<a class="reference internal" href="zreferences.html#id84" title="J.E. Kinsey, G.M. Staebler, and R.E. Waltz. The first transport code simulations using the trapped gyro-landau-fluid model. Phys. Plasmas, 15:055908, 2008.">KSW08</a>, <a class="reference internal" href="zreferences.html#id98" title="G.M. Staebler, J.E. Kinsey, and R.E. Waltz. A theory-based transport model with comprehensive physics. Phys. Plasmas, 14:055909, 2007.">SKW07</a>]</span></p></td>
<td><p><span id="id1">[<a class="reference internal" href="zreferences.html#id84" title="J. E. Kinsey, G. M. Staebler, and R. E. Waltz. The first transport code simulations using the trapped gyro-Landau-fluid model. Phys. Plasmas, 15(5):055908, 2008. doi:10.1063/1.2889008.">KSW08</a>, <a class="reference internal" href="zreferences.html#id98" title="G. M. Staebler, J. E. Kinsey, and R. E. Waltz. A theory-based transport model with comprehensive physics. Phys. Plasmas, 14(5):055909, 2007. doi:10.1063/1.2436852.">SKW07</a>]</span></p></td>
</tr>
<tr class="row-odd"><td><p>Spectral Shift</p></td>
<td><p><span id="id2">[<a class="reference internal" href="zreferences.html#id102" title="G.M. Staebler, R.E. Waltz, J. Candy, and J.E. Kinsey. A new paradigm for suppression of gyrokinetic turbulence by velocity shear. Phys. Rev. Lett., 110:055003, 2013.">SWCK13</a>]</span></p></td>
<td><p><span id="id2">[<a class="reference internal" href="zreferences.html#id102" title="G. M. Staebler, R. E. Waltz, J. Candy, and J. E. Kinsey. New paradigm for suppression of gyrokinetic turbulence by velocity shear. Phys. Rev. Lett., 110:055003, 2013. doi:10.1103/PhysRevLett.110.055003.">SWCK13</a>, <a class="reference internal" href="zreferences.html#id103" title="G.M. Staebler, J. Candy, R.E. Waltz, J.E. Kinsey, and W.M. Solomon. A new paradigm for ExB velocity shear suppression of gyro-kinetic turbulence and the momentum pinch. Nuclear Fusion, 53(11):113017, 2013. doi:10.1088/0029-5515/53/11/113017.">SCW+13</a>]</span></p></td>
</tr>
<tr class="row-even"><td><p>SAT1</p></td>
<td><p><span id="id3">[<a class="reference internal" href="zreferences.html#id103" title="G. M. Staebler, J. Candy, N. T. Howard, and C. Holland. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence. Phys. Plasmas, 23(6):062518, 2016. doi:10.1063/1.4954905.">SCHH16</a>]</span></p></td>
<td><p><span id="id3">[<a class="reference internal" href="zreferences.html#id104" title="G. M. Staebler, J. Candy, N. T. Howard, and C. Holland. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence. Phys. Plasmas, 23(6):062518, 2016. doi:10.1063/1.4954905.">SCHH16</a>]</span></p></td>
</tr>
<tr class="row-odd"><td><p>SAT2</p></td>
<td><p><span id="id4">[<a class="reference internal" href="zreferences.html#id104" title="G M Staebler, J Candy, E A Belli, J E Kinsey, N Bonanomi, and B Patel. Geometry dependence of the fluctuation intensity in gyrokinetic turbulence. Plasma Physics and Controlled Fusion, 63(1):015013, 2020. doi:10.1088/1361-6587/abc861.">SCB+20</a>, <a class="reference internal" href="zreferences.html#id105" title="G.M. Staebler, E. A. Belli, J. Candy, J.E. Kinsey, H. Dudding, and B. Patel. Verification of a quasi-linear model for gyrokinetic turbulent transport. Nuclear Fusion, 61(11):116007, 2021. doi:10.1088/1741-4326/ac243a.">SBC+21</a>]</span></p></td>
<td><p><span id="id4">[<a class="reference internal" href="zreferences.html#id105" title="G M Staebler, J Candy, E A Belli, J E Kinsey, N Bonanomi, and B Patel. Geometry dependence of the fluctuation intensity in gyrokinetic turbulence. Plasma Physics and Controlled Fusion, 63(1):015013, 2020. doi:10.1088/1361-6587/abc861.">SCB+20</a>, <a class="reference internal" href="zreferences.html#id106" title="G.M. Staebler, E. A. Belli, J. Candy, J.E. Kinsey, H. Dudding, and B. Patel. Verification of a quasi-linear model for gyrokinetic turbulent transport. Nuclear Fusion, 61(11):116007, 2021. doi:10.1088/1741-4326/ac243a.">SBC+21</a>]</span></p></td>
</tr>
<tr class="row-even"><td><p>SAT3</p></td>
<td><p><span id="id5">[<a class="reference internal" href="zreferences.html#id51" title="H.G. Dudding, F.J. Casson, D. Dickinson, B.S. Patel, C.M. Roach, E.A. Belli, and G.M. Staebler. A new quasilinear saturation rule for tokamak turbulence with application to the isotope scaling of transport. Nuclear Fusion, 62(9):096005, 2022. doi:10.1088/1741-4326/ac7a4d.">DCD+22</a>, <a class="reference internal" href="zreferences.html#id52" title="Harry George Dudding. A new quasilinear saturation rule for tokamak turbulence. PhD thesis, University of York, October 2022. URL: https://etheses.whiterose.ac.uk/32664/.">Dud22</a>]</span></p></td>
Expand All @@ -154,10 +154,10 @@ <h2>Overview<a class="headerlink" href="#overview" title="Link to this heading">
</thead>
<tbody>
<tr class="row-even"><td><p>DIII-D</p></td>
<td><p><span id="id6">[<a class="reference internal" href="zreferences.html#id58" title="B.A. Grierson, G.M. Staebler, W.M. Solomon, G.R. McKee, C. Holland, M. Austin, A. Marinoni, L. Schmitz, R.I. Pinsker, and DIII-D Team. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER. Phys. Plasmas, 25(2):022509, 2018.">GSS+18</a>, <a class="reference internal" href="zreferences.html#id141" title="K.E. Thome, X.D. Du, B.A. Grierson, G.J. Kramer, C.C. Petty, C. Holland, M. Knolker, G.R. McKee, J. McClenaghan, D.C. Pace, T.L. Rhodes, S.P. Smith, C. Sung, F. Turco, M.A. Van Zeeland, L. Zeng, and Y.B. Zhu. Response of thermal and fast-ion transport to beam ion population, rotation and Te/Ti in the DIII-D steady state hybrid scenario. Nucl. Fusion, 61:036036, 2021.">TDG+21</a>]</span></p></td>
<td><p><span id="id6">[<a class="reference internal" href="zreferences.html#id58" title="B.A. Grierson, G.M. Staebler, W.M. Solomon, G.R. McKee, C. Holland, M. Austin, A. Marinoni, L. Schmitz, R.I. Pinsker, and DIII-D Team. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER. Phys. Plasmas, 25(2):022509, 2018.">GSS+18</a>, <a class="reference internal" href="zreferences.html#id142" title="K.E. Thome, X.D. Du, B.A. Grierson, G.J. Kramer, C.C. Petty, C. Holland, M. Knolker, G.R. McKee, J. McClenaghan, D.C. Pace, T.L. Rhodes, S.P. Smith, C. Sung, F. Turco, M.A. Van Zeeland, L. Zeng, and Y.B. Zhu. Response of thermal and fast-ion transport to beam ion population, rotation and Te/Ti in the DIII-D steady state hybrid scenario. Nucl. Fusion, 61:036036, 2021.">TDG+21</a>]</span></p></td>
</tr>
<tr class="row-odd"><td><p>NSTX</p></td>
<td><p><span id="id7">[<a class="reference internal" href="zreferences.html#id142" title="S.M. Kaye and others. NSTX/NSTX-U theory, modeling and analysis results. Nucl. Fusion, 59:112007, 2019.">K+19</a>]</span></p></td>
<td><p><span id="id7">[<a class="reference internal" href="zreferences.html#id143" title="S.M. Kaye and others. NSTX/NSTX-U theory, modeling and analysis results. Nucl. Fusion, 59:112007, 2019.">K+19</a>]</span></p></td>
</tr>
<tr class="row-even"><td><p>ASDEX</p></td>
<td><p><span id="id8">[<a class="reference internal" href="zreferences.html#id8" title="C. Angioni, T. Gamot, G. Tardini, E. Fable, T. Luda, N. Bonanomi, C.K. Kiefer, G.M. Staebler, the ASDEX Upgrade Team, and the EUROfusion MST1 Team. Confinement properties of L-mode plasmas in ASDEX Upgrade and full-radius predictions of the TGLF transport model. Nucl. Fusion, 62:066015, 2022. doi:10.1088/1741-4326/ac592b.">AGT+22</a>]</span></p></td>
Expand Down
10 changes: 5 additions & 5 deletions docs/tglf/tglf_list.html
Original file line number Diff line number Diff line change
Expand Up @@ -201,7 +201,7 @@ <h1>Alphabetical list for input.tglf<a class="headerlink" href="#alphabetical-li
<section id="alpha-e">
<span id="tglf-alpha-e"></span><h2>ALPHA_E<a class="headerlink" href="#alpha-e" title="Link to this heading"></a></h2>
<p><strong>Definition</strong></p>
<p>Multiplies ExB velocity shear for spectral shift model [Staebler et al., PRL, 2013].</p>
<p>Multiplies ExB velocity shear for spectral shift model <span id="id1">[<a class="reference internal" href="../zreferences.html#id102" title="G. M. Staebler, R. E. Waltz, J. Candy, and J. E. Kinsey. New paradigm for suppression of gyrokinetic turbulence by velocity shear. Phys. Rev. Lett., 110:055003, 2013. doi:10.1103/PhysRevLett.110.055003.">SWCK13</a>]</span>.</p>
<p><strong>Comments</strong></p>
<ul class="simple">
<li><p>DEFAULT = 1.0</p></li>
Expand Down Expand Up @@ -729,10 +729,10 @@ <h1>Alphabetical list for input.tglf<a class="headerlink" href="#alphabetical-li
<span id="tglf-sat-rule"></span><h2>SAT_RULE<a class="headerlink" href="#sat-rule" title="Link to this heading"></a></h2>
<p><strong>Definition</strong></p>
<ul class="simple">
<li><p>SAT_RULE = 0 finds zonal flow shear at each ky (e.g. Kinsey, Staebler, Waltz, PoP, 2008)</p></li>
<li><p>SAT_RULE = 1 finds dominant saturation mechanism (ZF mixing rate or drift-wave growth rate) and includes ky-coupling (Staebler et al., PoP, 2016)</p></li>
<li><p>SAT_RULE = 2 builds on SAT1 with refined geometric effects (due to Shafranov shift and elongation), improved TEM physics, simplified spectral shift (e.g. Staebler et al., NF, 2021; Staebler et al., PPCF, 2021)</p></li>
<li><p>SAT_RULE = 3 builds on SAT2, captures anti-gyroBohm scaling of fluxes, treats saturation of ITG and TEM differently, has quasi-linear model approximations to align quasi-linear weights with NL GK simulations (e.g. Dudding et al., NF, 2022; Dudding PhD Thesis)</p></li>
<li><p>SAT_RULE = 0 finds zonal flow shear at each ky <span id="id2">[<a class="reference internal" href="../zreferences.html#id98" title="G. M. Staebler, J. E. Kinsey, and R. E. Waltz. A theory-based transport model with comprehensive physics. Phys. Plasmas, 14(5):055909, 2007. doi:10.1063/1.2436852.">SKW07</a>]</span>.</p></li>
<li><p>SAT_RULE = 1 finds dominant saturation mechanism (ZF mixing rate or drift-wave growth rate) and includes ky-coupling <span id="id3">[<a class="reference internal" href="../zreferences.html#id104" title="G. M. Staebler, J. Candy, N. T. Howard, and C. Holland. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence. Phys. Plasmas, 23(6):062518, 2016. doi:10.1063/1.4954905.">SCHH16</a>]</span>.</p></li>
<li><p>SAT_RULE = 2 builds on SAT1 with refined geometric effects (due to Shafranov shift and elongation), improved TEM physics, simplified spectral shift <span id="id4">[<a class="reference internal" href="../zreferences.html#id105" title="G M Staebler, J Candy, E A Belli, J E Kinsey, N Bonanomi, and B Patel. Geometry dependence of the fluctuation intensity in gyrokinetic turbulence. Plasma Physics and Controlled Fusion, 63(1):015013, 2020. doi:10.1088/1361-6587/abc861.">SCB+20</a>, <a class="reference internal" href="../zreferences.html#id106" title="G.M. Staebler, E. A. Belli, J. Candy, J.E. Kinsey, H. Dudding, and B. Patel. Verification of a quasi-linear model for gyrokinetic turbulent transport. Nuclear Fusion, 61(11):116007, 2021. doi:10.1088/1741-4326/ac243a.">SBC+21</a>]</span>.</p></li>
<li><p>SAT_RULE = 3 builds on SAT2, captures anti-gyroBohm scaling of fluxes, treats saturation of ITG and TEM differently, has quasi-linear model approximations to align quasi-linear weights with NL GK simulations <span id="id5">[<a class="reference internal" href="../zreferences.html#id51" title="H.G. Dudding, F.J. Casson, D. Dickinson, B.S. Patel, C.M. Roach, E.A. Belli, and G.M. Staebler. A new quasilinear saturation rule for tokamak turbulence with application to the isotope scaling of transport. Nuclear Fusion, 62(9):096005, 2022. doi:10.1088/1741-4326/ac7a4d.">DCD+22</a>, <a class="reference internal" href="../zreferences.html#id52" title="Harry George Dudding. A new quasilinear saturation rule for tokamak turbulence. PhD thesis, University of York, October 2022. URL: https://etheses.whiterose.ac.uk/32664/.">Dud22</a>]</span>.</p></li>
</ul>
<p><strong>Comments</strong></p>
<ul class="simple">
Expand Down
Loading

0 comments on commit 509b09e

Please sign in to comment.