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The problem

Photon counting detectors are paralysable, meaning
that after a photon is detected at a pixel, there is a short
dead time during which the pixel is inactive. This re-
sults in some photons going undetected and the higher
the frequency of incident photons, the larger the pro-
portion that go missing. The detected count rate for a
given pixel can be modelled as

𝐶 = 𝐶0 𝑒−𝐶0𝜏 ,

where 𝐶0 is the true rate of incident photons. Up to a
point, the detector corrects for this under-counting —
the total intensity for each pixel in a given exposure is
multiplied by a correction factor. However, there is an
implicit assumption that the flux incident on each pixel
does not vary significantly during the exposure. The
correction is applied to the total measured intensity, ef-
fectively correcting an unweighted time-average of the
measured flux. Because the averaging takes no account
of the non-linear count rate response, a large variation
in the instantaneous flux can lead to undetected under-
counting, as illustrated in figure a. Where this occurs,
the ‘corrected’ measured flux, Φm, will fall short of the
true average flux for the pixel, Φ̄. The recorded inten-
sity, 𝐼 ∝ Φm, will therefore be too low, a phenomenon
referred to as instantaneous overloading.
In a standard rotation/oscillation single-crystal x-

ray diffraction experiment, this effect will be partic-
ularly significant when the angular dispersion of a
reflection (the mosaic spread) is much smaller than
the angle swept during the exposure, since the time-
averaged flux will then be a poor estimate of the peak
flux. Such small, bright reflections are often a feature
of small-molecule crystallography. screen19 serves as
an aid in screening a sample, warning of excessive in-
stantaneous flux to prevent collection of compromised
data.
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Figure a: Flux at a certain pixel, as a function of rota-
tion angle, in the vicinity of a Bragg peak. Each dashed
vertical line denotes the boundary between consecu-
tive exposures. Red trace: the true incident flux on
the pixel. Blue trace: the systematically under-counted
measured flux. Themeasured flux for a single exposure
(e.g. the shaded blue region) is aggregated and averaged
to achieve a value represented by the blue bar. Apply-
ing the count rate correction to this average yields the
pixel’s recorded flux for the exposure, represented by
the black bar, which systematically falls short of the
pixel’s true average flux for the exposure (the red bar ).

The screen19 solution
The notation below largely follows that of Kabsch
(2009), except where otherwise stated.

In terms of the profile coordinates, the flux of scat-
tered photons is commonly modelled as a Gaussian:

Φ = Φ̂(𝜀1, 𝜀2) ⋅ exp (−
𝜀32

2𝜎m2
) .

Hereafter, we ignore the effect of the beam divergence,
since 𝜎d is typically much larger than the pixel size and
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so there is relatively little variation in flux across a sin-
gle pixel — instead, Φ̂ is taken to be independent of 𝜀1
and 𝜀2.

screen19 attempts to warn the user of the presence of
instantaneous overloading by calculating the profile of
the reflections and estimating for each pixel the peak
instantaneous flux Φ̂ from themeasured flux,Φm. It has
been empirically determined that the measured flux is
unreliable (that is to say, the count correction is poor
and Φ̂ ≈ Φm starts to break down) when the instanta-
neous flux, Φ, is greater than 0.25× the upper limit of
the manufacturer’s stated trusted range. We can use
the fact that Φ̄ is easy to calculate in terms of Φ̂ and,
assuming Φm increases monotonically with Φ̂, exploit
Φ̂ ≈ Φm to convert the upper bound on instantaneous
flux into an estimated upper bound on measured flux.
The 𝜁-approximation allows us to express the re-

flection profile in terms of the sample rotation angle,
𝜀3 ≃ 𝜁 ⋅ (𝜙′ − 𝜙). The parameter 𝜁 is a function of recip-
rocal lattice vector and experiment geometry. Though
the distribution of 𝜁 values for all observed reflections
is not trivial to determine, replacing 𝜁with a single av-
erage value ̄𝜁 allows us to express Φ in terms of 𝜙′. The
determination of an appropriate value for ̄𝜁 is left as a
point for discussion. For a pixel containing the peak of
a reflection, we can then find Φ̄ in terms of Φ̂ by taking
the mean over 𝜙′ from 𝜙0 to 𝜙0 + Δ𝜙,

Φ̄ =
1
Δ𝜙

𝜙0+Δ𝜙

∫
𝜙0

Φ d𝜙′

= Φ̂ ⋅
√2𝜋 𝜎m

̄𝜁 Δ𝜙
⋅ 1
2
( erf (𝑧 (𝜙0 + Δ𝜙) ) − erf (𝑧 (𝜙0) ))

= Φ̂ ⋅ √𝜋
2Δ𝑧

⋅ ( erf (
̄𝜁 ⋅ (Δ𝜙 − 𝑥)

√2 𝜎m
) + erf (

̄𝜁 𝑥

√2 𝜎m
) ) ,

where 𝑧 (𝜙′) =
̄𝜁 ⋅(𝜙′−𝜙)
√2 𝜎m

, 𝑥 = 𝜙 − 𝜙0 and

Δ𝑧 = 𝑧 (𝜙0 + Δ𝜙) − 𝑧 (𝜙0) =
̄𝜁 Δ𝜙

√2 𝜎m
.

From this, we can see that Φ̂/Φ̄ lies in the range

Δ𝑧

√𝜋 erf (Δ𝑧
2
)
≤ Φ̂/Φ̄ ≤

2 Δ𝑧

√𝜋 erf (Δ𝑧)

according to the value of 𝜙 (i.e. the position of the flux
peak within an oscillation). The lower bound of Φ̂/Φ̄

corresponds to 𝜙 = 𝜙0 + Δ𝜙/2 and the upper bound
corresponds to 𝜙 = 0.

Finding all pixels containing reflection centroids and
calculating the value of Φ̂/Φ̄ in each case is expensive.
Rather, we would like to have an indicative measure of
the expected ratio of Φ̂/Φ̄ for pixels containing a peak.
𝜙 ∈ [𝜙0, 𝜙0 + Δ𝜙) is evenly distributed, but because
there is no analytical solution to ∫ Φ̂ d𝜙, we cannot cal-
culate ⟨Φ̂⟩/Φ̄ and must instead use an approximate av-
erage, such as ⟨Φ̂−1⟩−1/Φ̄. We can exploit the symmetry
of Φ̂ about 𝑥 = Δ𝜙/2 to simplify the sum:

⟨Φ̂−1⟩−1

Φ̄
=
Δ𝜙
Φ̄

(

𝜙0+Δ𝜙

∫
𝜙0

Φ̂−1 d𝜙)

−1

=
Δ𝑧Δ𝜙

√𝜋
(

Δ𝜙

∫
0

erf (
̄𝜁 𝑥

√2 𝜎m
) d𝑥)

−1

= Δ𝑧2 ([√
𝜋 ̄𝜁 𝑥

√2 𝜎m
erf (

̄𝜁 𝑥

√2 𝜎m
) + exp(− (

̄𝜁 𝑥

√2 𝜎m
)
2

)]

Δ𝜙

0

)

−1

=
Δ𝑧2

√𝜋Δ𝑧 erf(Δ𝑧) + 𝑒−Δ𝑧
2
− 1

. (1)

Hence

Φ̂ ≈ ⟨Φ̂−1⟩−1 ≈
⟨Φ̂−1⟩−1

Φ̄
Φm =

Δ𝑧2

√𝜋Δ𝑧 erf(Δ𝑧) + 𝑒−Δ𝑧
2
− 1

Φm .

screen19 multiplies the intensity of every pixel by
this approximate factor of Φ̂/Φm. Pixels with a de-
duced intensity greater than 0.25× the upper limit of
the trusted range of the detector are flagged as over-
loaded. Naturally, since this intensity correction has
been optimised for pixels containing the peak of a re-
flection, it does not produce an accurate estimate of
the maximum instantaneous flux for pixels that do not
contain a peak. In fact, it still underestimates the max-
imum instantaneous flux for non-peak pixels. Since
the peak-containing pixels are necessarily the bright-
est however, correctly identifying these is a sufficient
guide to the presence and location of instantaneous
overloads.

Sanity checks
It is not clear by inspection how equation 1 behaves in
the limit Δ𝑧 → 0. We expect in such a case, where the
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mosaicity, 𝜎m, far exceeds the oscillation, Δ𝜙, that the
instantaneous flux should not vary significantly across
a single exposure. The pixel count correction should
therefore give an accurate representation of the true
peak flux — we would expect Φ̂ ≈ Φm to be a good
approximation. Sure enough, a double application of
l’Hôpital’s rule to equation 1 yields

lim
Δ𝑧→0

⟨Φ̂−1⟩−1

Φ̄

[ 0
0
]

=
H

lim
Δ𝑧→0

2 Δ𝑧

√𝜋 erf (Δ𝑧)

[ 0
0
]

=
H

lim
Δ𝑧→0

𝑒Δ𝑧
2
= 1 .

For higher values of Δ𝑧, we are less interested in
the exact behaviour of ⟨Φ̂−1⟩−1/Φ̄, since the approxima-
tion Φm ≈ Φ̂ becomes very unreliable. We need only
be satisfied that ⟨Φ̂−1⟩−1 increases monotonically with
Δ𝑧, such that instantaneous overloads never go unde-
tected.

Choice of value for ̄𝜻
In a typical goniometer geometry, the sample is rotated
around an axis that is normal to the plane in which the
detector moves on the 2𝜃 arm. A point detector in this
geometry would only be able to measure reflections
for which the incident and scattered ray vectors are
coplanar with the plane in which the detector moves.
An area detector allows for measurement of reflections
where the scattering plane (the plane of the incident
and scattered ray vectors) may be at a small angle to
the plane of the 2𝜃 arm. 𝜁 takes account in the Lorentz
correction of this deviation of the scattering plane from
the plane of the 2𝜃 arm and theoretically has a range
0 ≤ 𝜁 ≤ 1. In practice, unless the detector is infinitely
wide, 𝜁 ≠ 0 and in most cases 𝜁 ≈ 1.
In the estimation above of expected peak instanta-

neous flux, it was necessary to designate an average
value ̄𝜁. A proper calculation of this value would re-
quire averaging the expected distribution of reflections
across the width of the detector. However, since there
would be little deviation from 𝜁 = 1 for most geome-
tries, and since little can be lost by making a more
conservative estimate, namely the value of ̄𝜁 that max-
imises Δ𝑧, screen19 uses the value ̄𝜁 = 1.

3


