Skip to content

Latest commit

 

History

History
256 lines (190 loc) · 11.6 KB

commands.md

File metadata and controls

256 lines (190 loc) · 11.6 KB

Commands

Config

Note that currently our model loading for vae and diffusion model supports two types:

  • load from local file path
  • load from huggingface

Our config supports loading from huggingface online image by default. If you wish to load from a local path downloaded from huggingface image, you need to set force_huggingface=True, for instance:

# for vae
vae = dict(
    type="OpenSoraVAE_V1_2",
    from_pretrained="/root/commonData/OpenSora-VAE-v1.2",
    micro_frame_size=17,
    micro_batch_size=4,
    force_huggingface=True, # NOTE: set here
)
# for diffusion model
model = dict(
    type="STDiT3-XL/2",
    from_pretrained="/root/commonData/OpenSora-STDiT-v3",
    qk_norm=True,
    enable_flash_attn=True,
    enable_layernorm_kernel=True,
    force_huggingface=True, # NOTE: set here
)

However, if you want to load a self-trained model, do not set force_huggingface=True since your image won't be in huggingface format.

Inference

You can modify corresponding config files to change the inference settings. See more details here.

Inference with Open-Sora 1.2

The inference API is compatible with Open-Sora 1.1. To ease users' experience, we add support to --resolution and --aspect-ratio options, which is a more user-friendly way to specify the image size.

python scripts/inference.py configs/opensora-v1-2/inference/sample.py \
    --resolution 480p --aspect-ratio 9:16
# equivalent to
python scripts/inference.py configs/opensora-v1-2/inference/sample.py \
    --image-size 480 853

In this version, we have merged all functions in previous inference-long.py into inference.py. The command line arguments are the same as before (only note that the frame index and length is calculated with 4x compressed).

Inference with Open-Sora 1.1

Since Open-Sora 1.1 supports inference with dynamic input size, you can pass the input size as an argument.

# image sampling with prompt path
python scripts/inference.py configs/opensora-v1-1/inference/sample.py \
    --ckpt-path CKPT_PATH --prompt-path assets/texts/t2i_samples.txt --num-frames 1 --image-size 1024 1024

# image sampling with prompt
python scripts/inference.py configs/opensora-v1-1/inference/sample.py \
    --ckpt-path CKPT_PATH --prompt "A beautiful sunset over the city" --num-frames 1 --image-size 1024 1024

# video sampling
python scripts/inference.py configs/opensora-v1-1/inference/sample.py \
    --ckpt-path CKPT_PATH --prompt "A beautiful sunset over the city" --num-frames 16 --image-size 480 854

You can adjust the --num-frames and --image-size to generate different results. We recommend you to use the same image size as the training resolution, which is defined in aspect.py. Some examples are shown below.

  • 240p
    • 16:9 240x426
    • 3:4 276x368
    • 1:1 320x320
  • 480p
    • 16:9 480x854
    • 3:4 554x738
    • 1:1 640x640
  • 720p
    • 16:9 720x1280
    • 3:4 832x1110
    • 1:1 960x960

inference-long.py is compatible with inference.py and supports advanced features.

# image condition
python scripts/inference-long.py configs/opensora-v1-1/inference/sample.py --ckpt-path CKPT_PATH \
  --num-frames 32 --image-size 240 426 --sample-name image-cond \
  --prompt 'A breathtaking sunrise scene.{"reference_path": "assets/images/condition/wave.png","mask_strategy": "0"}'

# video extending
python scripts/inference-long.py configs/opensora-v1-1/inference/sample.py --ckpt-path CKPT_PATH \
  --num-frames 32 --image-size 240 426 --sample-name image-cond \
  --prompt 'A car driving on the ocean.{"reference_path": "https://cdn.openai.com/tmp/s/interp/d0.mp4","mask_strategy": "0,0,0,-8,8"}'

# long video generation
python scripts/inference-long.py configs/opensora-v1-1/inference/sample.py --ckpt-path CKPT_PATH \
  --num-frames 32 --image-size 240 426 --loop 16 --condition-frame-length 8 --sample-name long \
  --prompt '|0|a white jeep equipped with a roof rack driving on a dirt road in a coniferous forest.|2|a white jeep equipped with a roof rack driving on a dirt road in the desert.|4|a white jeep equipped with a roof rack driving on a dirt road in a mountain.|6|A white jeep equipped with a roof rack driving on a dirt road in a city.|8|a white jeep equipped with a roof rack driving on a dirt road on the surface of a river.|10|a white jeep equipped with a roof rack driving on a dirt road under the lake.|12|a white jeep equipped with a roof rack flying into the sky.|14|a white jeep equipped with a roof rack driving in the universe. Earth is the background.{"reference_path": "https://cdn.openai.com/tmp/s/interp/d0.mp4", "mask_strategy": "0,0,0,0,16"}'

# video connecting
python scripts/inference-long.py configs/opensora-v1-1/inference/sample.py --ckpt-path CKPT_PATH \
  --num-frames 32 --image-size 240 426 --sample-name connect \
  --prompt 'A breathtaking sunrise scene.{"reference_path": "assets/images/condition/sunset1.png;assets/images/condition/sunset2.png","mask_strategy": "0;0,1,0,-1,1"}'

# video editing
python scripts/inference-long.py configs/opensora-v1-1/inference/sample.py --ckpt-path CKPT_PATH \
  --num-frames 32 --image-size 480 853 --sample-name edit \
  --prompt 'A cyberpunk-style city at night.{"reference_path": "https://cdn.pixabay.com/video/2021/10/12/91744-636709154_large.mp4","mask_strategy": "0,0,0,0,32,0.4"}'

Inference with DiT pretrained on ImageNet

The following command automatically downloads the pretrained weights on ImageNet and runs inference.

python scripts/inference.py configs/dit/inference/1x256x256-class.py --ckpt-path DiT-XL-2-256x256.pt

Inference with Latte pretrained on UCF101

The following command automatically downloads the pretrained weights on UCF101 and runs inference.

python scripts/inference.py configs/latte/inference/16x256x256-class.py --ckpt-path Latte-XL-2-256x256-ucf101.pt

Inference with PixArt-α pretrained weights

Download T5 into ./pretrained_models and run the following command.

# 256x256
torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/pixart/inference/1x256x256.py --ckpt-path PixArt-XL-2-256x256.pth

# 512x512
torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/pixart/inference/1x512x512.py --ckpt-path PixArt-XL-2-512x512.pth

# 1024 multi-scale
torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/pixart/inference/1x1024MS.py --ckpt-path PixArt-XL-2-1024MS.pth

Inference with checkpoints saved during training

During training, an experiment logging folder is created in outputs directory. Under each checkpoint folder, e.g. epoch12-global_step2000, there is a ema.pt and the shared model folder. Run the following command to perform inference.

# inference with ema model
torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/opensora/inference/16x256x256.py --ckpt-path outputs/001-STDiT-XL-2/epoch12-global_step2000/ema.pt

# inference with model
torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/opensora/inference/16x256x256.py --ckpt-path outputs/001-STDiT-XL-2/epoch12-global_step2000

# inference with sequence parallelism
# sequence parallelism is enabled automatically when nproc_per_node is larger than 1
torchrun --standalone --nproc_per_node 2 scripts/inference.py configs/opensora/inference/16x256x256.py --ckpt-path outputs/001-STDiT-XL-2/epoch12-global_step2000

The second command will automatically generate a model_ckpt.pt file in the checkpoint folder.

Inference Hyperparameters

  1. DPM-solver is good at fast inference for images. However, the video result is not satisfactory. You can use it for fast demo purpose.
type="dmp-solver"
num_sampling_steps=20
  1. You can use SVD's finetuned VAE decoder on videos for inference (consumes more memory). However, we do not see significant improvement in the video result. To use it, download the pretrained weights into ./pretrained_models/vae_temporal_decoder and modify the config file as follows.
vae = dict(
    type="VideoAutoencoderKLTemporalDecoder",
    from_pretrained="pretrained_models/vae_temporal_decoder",
)

Training

To resume training, run the following command. --load different from --ckpt-path as it loads the optimizer and dataloader states.

torchrun --nnodes=1 --nproc_per_node=8 scripts/train.py configs/opensora/train/64x512x512.py --data-path YOUR_CSV_PATH --load YOUR_PRETRAINED_CKPT

To enable wandb logging, add --wandb to the command.

WANDB_API_KEY=YOUR_WANDB_API_KEY torchrun --nnodes=1 --nproc_per_node=8 scripts/train.py configs/opensora/train/64x512x512.py --data-path YOUR_CSV_PATH --wandb True

You can modify corresponding config files to change the training settings. See more details here.

Training Hyperparameters

  1. dtype is the data type for training. Only fp16 and bf16 are supported. ColossalAI automatically enables the mixed precision training for fp16 and bf16. During training, we find bf16 more stable.

Search batch size for buckets

To search the batch size for buckets, run the following command.

torchrun --standalone --nproc_per_node 1 scripts/misc/search_bs.py configs/opensora-v1-2/misc/bs.py --data-path /mnt/nfs-207/sora_data/meta/searchbs.csv

Here, your data should be a small one for searching purposes.

To control the batch size search range, you should specify bucket_config in the config file, where the value tuple is (guess_value, range) and the search will be performed in guess_value±range.

Here is an example of the bucket config:

bucket_config = {
  "240p": {
        1: (100, 100),
        51: (24, 10),
        102: (12, 10),
        204: (4, 8),
        408: (2, 8),
    },
    "480p": {
        1: (50, 50),
        51: (6, 6),
        102: (3, 3),
        204: (1, 2),
    },
}

You can also specify a resolution to search for parallelism.

torchrun --standalone --nproc_per_node 1 scripts/misc/search_bs.py configs/opensora-v1-2/misc/bs.py --data-path /mnt/nfs-207/sora_data/meta/searchbs.csv --resolution 240p

The searching goal should be specified in the config file as well. There are two ways:

  1. Specify a base_step_time in the config file. The searching goal is to find the batch size that can achieve the base_step_time for each bucket.
  2. If base_step_time is not specified, it will be determined by base which is a tuple of (batch_size, step_time). The step time is the maximum batch size allowed for the bucket.

The script will print the best batch size (and corresponding step time) for each bucket and save the output config file. Note that we assume a larger batch size is better, so the script use binary search to find the best batch size.